首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   429篇
  免费   36篇
  2023年   7篇
  2022年   4篇
  2021年   17篇
  2020年   15篇
  2019年   16篇
  2018年   14篇
  2017年   16篇
  2016年   17篇
  2015年   39篇
  2014年   32篇
  2013年   38篇
  2012年   37篇
  2011年   43篇
  2010年   21篇
  2009年   22篇
  2008年   15篇
  2007年   21篇
  2006年   12篇
  2005年   14篇
  2004年   14篇
  2003年   15篇
  2002年   6篇
  2001年   8篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有465条查询结果,搜索用时 15 毫秒
101.
102.
Duchenne muscular dystrophy (DMD) is characterized by a severe and progressive destruction of muscle fibers associated with altered Ca2+ homeostasis. We have previously shown that the IP3 receptor (IP3R) plays a role in elevating basal cytoplasmic Ca2+ and that pharmacological blockade of IP3R restores muscle function. Moreover, we have shown that the IP3R pathway negatively regulates autophagy by controlling mitochondrial Ca2+ levels. Nevertheless, it remains unclear whether IP3R is involved in abnormal mitochondrial Ca2+ levels, mitochondrial dynamics, or autophagy and mitophagy observed in adult DMD skeletal muscle. Here, we show that the elevated basal autophagy and autophagic flux levels were normalized when IP3R was downregulated in mdx fibers. Pharmacological blockade of IP3R in mdx fibers restored both increased mitochondrial Ca2+ levels and mitochondrial membrane potential under resting conditions. Interestingly, mdx mitochondria changed from a fission to an elongated state after IP3R knockdown, and the elevated mitophagy levels in mdx fibers were normalized. To our knowledge, this is the first study associating IP3R1 activity with changes in autophagy, mitochondrial Ca2+ levels, mitochondrial membrane potential, mitochondrial dynamics, and mitophagy in adult mouse skeletal muscle. Moreover, these results suggest that increased IP3R activity in mdx fibers plays an important role in the pathophysiology of DMD. Overall, these results lead us to propose the use of specific IP3R blockers as a new pharmacological treatment for DMD, given their ability to restore both autophagy/mitophagy and mitochondrial function.  相似文献   
103.
Rice double haploid (DH) plants are produced mainly through anther culture. In order to improve the anther culture protocol, microspores of two japonica rice genotypes (NRVC980385 and H28) were subjected to three growth regulator combinations and four colchicine treatments on induction medium. In addition, a post anther culture procedure using colchicine or oryzalin was tested to induce double haploid plantlets from haploid plantlets. A cold pre-treatment of microspores for 9 days at 10 °C increased callus induction 50-fold in the NRCV980385 genotype. For both genotypes, 2 mg L?1 2,4-D and 1 mg L?1 kinetin on colchicine-free induction medium gave the best culture responses. The culturability of both genotypes changed on colchicine-supplemented induction media. A high genotype dependency was recorded for callus induction, callus regenerating green plantlets and regeneration of green double haploid plantlets. Colchicine at 300 mg L?1 for 48 h enhanced callus induction 100-fold in H28. Colchicine-supplemented media clearly improved green double haploid plantlet regeneration. We showed that the post-anther culture treatment of haploid plantlets at 500 mg L?1 of colchicine permitted fertile double haploid plantlets to be generated. Finally, an enhanced medium-throughput flow cytometry protocol for rice was tested to analyse all the plantlets from anther and post anther culture.  相似文献   
104.
105.
106.
Aimsto design calcium and zinc-loaded bioactive and cytocompatible nanoparticles for the treatment of periodontal disease.MethodsPolymP-nActive nanoparticles were zinc or calcium loaded. Biomimetic calcium phosphate precipitation on polymeric particles was assessed after 7 days immersion in simulated body fluid, by scanning electron microscopy attached to an energy dispersive analysis system. Amorphous mineral deposition was probed by X-ray diffraction. Cell viability analysis was performed using oral mucosa fibroblasts by: 1) quantifying the liberated deoxyribonucleic acid from dead cells, 2) detecting the amount of lactate dehydrogenase enzyme released by cells with damaged membranes, and 3) by examining the cytoplasmic esterase function and cell membranes integrity with a fluorescence-based method using the Live/Dead commercial kit. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests.ResultsPrecipitation of calcium and phosphate on the nanoparticles surfaces was observed in calcium-loaded nanoparticles. Non-loaded nanoparticles were found to be non-toxic in all the assays, calcium and zinc-loaded particles presented a dose dependent but very low cytotoxic effect.ConclusionsThe ability of calcium-loaded nanoparticles to promote precipitation of calcium phosphate deposits, together with their observed non-toxicity may offer new strategies for periodontal disease treatment.  相似文献   
107.
Summary A convenient catecholamine transport assay has been developed which permits continuous, instantaneous monitoring of transmembrane flux. Epinephrine transport has been examined by spectrophotometrically monitoring adrenochrome formation resulting from the passive diffusion of catecholamine into unilamellar phospholipid vesicles containing entrapped potassium ferricyanide. Ferricyanide oxidation of epinephrine under the conditions employed is fast compared to membrane transport, which obviates the need for intravesicular concentration or volume determinations. Epinephrine transport data over a pH 6 to 7 range have been fitted to an integrated rate equation from which a permeability coefficient for neutral epinephrine of 2.7±1.5×10–6 cm/sec has been obtained.  相似文献   
108.
109.
A 21-year old male presented with ataxia and dysarthria that had appeared over a period of months. Exome sequencing identified a de novo missense variant in ATP1A3, the gene encoding the α3 subunit of Na,K-ATPase. Several lines of evidence suggest that the variant is causative. ATP1A3 mutations can cause rapid-onset dystonia-parkinsonism (RDP) with a similar age and speed of onset, as well as severe diseases of infancy. The patient’s ATP1A3 p.Gly316Ser mutation was validated in the laboratory by the impaired ability of the expressed protein to support the growth of cultured cells. In a crystal structure of Na,K-ATPase, the mutated amino acid was directly apposed to a different amino acid mutated in RDP. Clinical evaluation showed that the patient had many characteristics of RDP, however he had minimal fixed dystonia, a defining symptom of RDP. Successive magnetic resonance imaging (MRI) revealed progressive cerebellar atrophy, explaining the ataxia. The absence of dystonia in the presence of other RDP symptoms corroborates other evidence that the cerebellum contributes importantly to dystonia pathophysiology. We discuss the possibility that a second de novo variant, in ubiquilin 4 (UBQLN4), a ubiquitin pathway component, contributed to the cerebellar neurodegenerative phenotype and differentiated the disease from other manifestations of ATP1A3 mutations. We also show that a homozygous variant in GPRIN1 (G protein-regulated inducer of neurite outgrowth 1) deletes a motif with multiple copies and is unlikely to be causative.  相似文献   
110.
Ongoing climate change can alter conditions for plant growth, in turn affecting ecological and social systems. While there have been considerable advances in understanding the physical aspects of climate change, comprehensive analyses integrating climate, biological, and social sciences are less common. Here we use climate projections under alternative mitigation scenarios to show how changes in environmental variables that limit plant growth could impact ecosystems and people. We show that although the global mean number of days above freezing will increase by up to 7% by 2100 under “business as usual” (representative concentration pathway [RCP] 8.5), suitable growing days will actually decrease globally by up to 11% when other climatic variables that limit plant growth are considered (i.e., temperature, water availability, and solar radiation). Areas in Russia, China, and Canada are projected to gain suitable plant growing days, but the rest of the world will experience losses. Notably, tropical areas could lose up to 200 suitable plant growing days per year. These changes will impact most of the world’s terrestrial ecosystems, potentially triggering climate feedbacks. Human populations will also be affected, with up to ~2,100 million of the poorest people in the world (~30% of the world’s population) highly vulnerable to changes in the supply of plant-related goods and services. These impacts will be spatially variable, indicating regions where adaptations will be necessary. Changes in suitable plant growing days are projected to be less severe under strong and moderate mitigation scenarios (i.e., RCP 2.6 and RCP 4.5), underscoring the importance of reducing emissions to avoid such disproportionate impacts on ecosystems and people.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号